3.345 \(\int \frac{x^2}{(d+e x)^2 \sqrt{a+c x^2}} \, dx\)

Optimal. Leaf size=137 \[ -\frac{d^2 \sqrt{a+c x^2}}{e (d+e x) \left (a e^2+c d^2\right )}+\frac{d \left (2 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{e^2 \left (a e^2+c d^2\right )^{3/2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{\sqrt{c} e^2} \]

[Out]

-((d^2*Sqrt[a + c*x^2])/(e*(c*d^2 + a*e^2)*(d + e*x))) + ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]]/(Sqrt[c]*e^2) +
(d*(c*d^2 + 2*a*e^2)*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(e^2*(c*d^2 + a*e^2)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.168101, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.227, Rules used = {1651, 844, 217, 206, 725} \[ -\frac{d^2 \sqrt{a+c x^2}}{e (d+e x) \left (a e^2+c d^2\right )}+\frac{d \left (2 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{e^2 \left (a e^2+c d^2\right )^{3/2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{\sqrt{c} e^2} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

-((d^2*Sqrt[a + c*x^2])/(e*(c*d^2 + a*e^2)*(d + e*x))) + ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]]/(Sqrt[c]*e^2) +
(d*(c*d^2 + 2*a*e^2)*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(e^2*(c*d^2 + a*e^2)^(3/2))

Rule 1651

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, d
 + e*x, x], R = PolynomialRemainder[Pq, d + e*x, x]}, Simp[(e*R*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1
)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p*ExpandToSum[(m
+ 1)*(c*d^2 + a*e^2)*Q + c*d*R*(m + 1) - c*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, c, d, e, p}, x] && Po
lyQ[Pq, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rubi steps

\begin{align*} \int \frac{x^2}{(d+e x)^2 \sqrt{a+c x^2}} \, dx &=-\frac{d^2 \sqrt{a+c x^2}}{e \left (c d^2+a e^2\right ) (d+e x)}-\frac{\int \frac{a d-\frac{\left (c d^2+a e^2\right ) x}{e}}{(d+e x) \sqrt{a+c x^2}} \, dx}{c d^2+a e^2}\\ &=-\frac{d^2 \sqrt{a+c x^2}}{e \left (c d^2+a e^2\right ) (d+e x)}+\frac{\int \frac{1}{\sqrt{a+c x^2}} \, dx}{e^2}-\frac{\left (d \left (2 a+\frac{c d^2}{e^2}\right )\right ) \int \frac{1}{(d+e x) \sqrt{a+c x^2}} \, dx}{c d^2+a e^2}\\ &=-\frac{d^2 \sqrt{a+c x^2}}{e \left (c d^2+a e^2\right ) (d+e x)}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{a+c x^2}}\right )}{e^2}+\frac{\left (d \left (2 a+\frac{c d^2}{e^2}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{c d^2+a e^2-x^2} \, dx,x,\frac{a e-c d x}{\sqrt{a+c x^2}}\right )}{c d^2+a e^2}\\ &=-\frac{d^2 \sqrt{a+c x^2}}{e \left (c d^2+a e^2\right ) (d+e x)}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{\sqrt{c} e^2}+\frac{d \left (2 a+\frac{c d^2}{e^2}\right ) \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{c d^2+a e^2} \sqrt{a+c x^2}}\right )}{\left (c d^2+a e^2\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.371877, size = 172, normalized size = 1.26 \[ \frac{d \left (\frac{\left (2 a e^2+c d^2\right ) \log \left (\sqrt{a+c x^2} \sqrt{a e^2+c d^2}+a e-c d x\right )}{\left (a e^2+c d^2\right )^{3/2}}-\frac{d e \sqrt{a+c x^2}}{(d+e x) \left (a e^2+c d^2\right )}\right )-\frac{\left (2 a d e^2+c d^3\right ) \log (d+e x)}{\left (a e^2+c d^2\right )^{3/2}}+\frac{\log \left (\sqrt{c} \sqrt{a+c x^2}+c x\right )}{\sqrt{c}}}{e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

(-(((c*d^3 + 2*a*d*e^2)*Log[d + e*x])/(c*d^2 + a*e^2)^(3/2)) + Log[c*x + Sqrt[c]*Sqrt[a + c*x^2]]/Sqrt[c] + d*
(-((d*e*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*(d + e*x))) + ((c*d^2 + 2*a*e^2)*Log[a*e - c*d*x + Sqrt[c*d^2 + a*e^
2]*Sqrt[a + c*x^2]])/(c*d^2 + a*e^2)^(3/2)))/e^2

________________________________________________________________________________________

Maple [B]  time = 0.245, size = 368, normalized size = 2.7 \begin{align*}{\frac{1}{{e}^{2}}\ln \left ( x\sqrt{c}+\sqrt{c{x}^{2}+a} \right ){\frac{1}{\sqrt{c}}}}+2\,{\frac{d}{{e}^{3}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}-{\frac{{d}^{2}}{{e}^{2} \left ( a{e}^{2}+c{d}^{2} \right ) }\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \left ({\frac{d}{e}}+x \right ) ^{-1}}-{\frac{c{d}^{3}}{{e}^{3} \left ( a{e}^{2}+c{d}^{2} \right ) }\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(e*x+d)^2/(c*x^2+a)^(1/2),x)

[Out]

1/e^2*ln(x*c^(1/2)+(c*x^2+a)^(1/2))/c^(1/2)+2*d/e^3/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*
(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x))-d^2/e^2/(a
*e^2+c*d^2)/(d/e+x)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2)-d^3/e^3*c/(a*e^2+c*d^2)/((a*e^2+c*d^
2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c-2*c*d/e*(d/e+x)
+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 46.1452, size = 2615, normalized size = 19.09 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*((c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5)*x)*sqrt(c)*log(-2*c*x^2 - 2
*sqrt(c*x^2 + a)*sqrt(c)*x - a) + (c^2*d^4 + 2*a*c*d^2*e^2 + (c^2*d^3*e + 2*a*c*d*e^3)*x)*sqrt(c*d^2 + a*e^2)*
log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(
c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) - 2*(c^2*d^4*e + a*c*d^2*e^3)*sqrt(c*x^2 + a))/(c^3*d^5*e^2 + 2*a*c^2*d
^3*e^4 + a^2*c*d*e^6 + (c^3*d^4*e^3 + 2*a*c^2*d^2*e^5 + a^2*c*e^7)*x), 1/2*(2*(c^2*d^4 + 2*a*c*d^2*e^2 + (c^2*
d^3*e + 2*a*c*d*e^3)*x)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^
2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) + (c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 +
a^2*e^5)*x)*sqrt(c)*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) - 2*(c^2*d^4*e + a*c*d^2*e^3)*sqrt(c*x^2 +
 a))/(c^3*d^5*e^2 + 2*a*c^2*d^3*e^4 + a^2*c*d*e^6 + (c^3*d^4*e^3 + 2*a*c^2*d^2*e^5 + a^2*c*e^7)*x), -1/2*(2*(c
^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5)*x)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(
c*x^2 + a)) - (c^2*d^4 + 2*a*c*d^2*e^2 + (c^2*d^3*e + 2*a*c*d*e^3)*x)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a
*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2
 + 2*d*e*x + d^2)) + 2*(c^2*d^4*e + a*c*d^2*e^3)*sqrt(c*x^2 + a))/(c^3*d^5*e^2 + 2*a*c^2*d^3*e^4 + a^2*c*d*e^6
 + (c^3*d^4*e^3 + 2*a*c^2*d^2*e^5 + a^2*c*e^7)*x), ((c^2*d^4 + 2*a*c*d^2*e^2 + (c^2*d^3*e + 2*a*c*d*e^3)*x)*sq
rt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a
*c*e^2)*x^2)) - (c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5)*x)*sqrt(-c)*arcta
n(sqrt(-c)*x/sqrt(c*x^2 + a)) - (c^2*d^4*e + a*c*d^2*e^3)*sqrt(c*x^2 + a))/(c^3*d^5*e^2 + 2*a*c^2*d^3*e^4 + a^
2*c*d*e^6 + (c^3*d^4*e^3 + 2*a*c^2*d^2*e^5 + a^2*c*e^7)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{a + c x^{2}} \left (d + e x\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(e*x+d)**2/(c*x**2+a)**(1/2),x)

[Out]

Integral(x**2/(sqrt(a + c*x**2)*(d + e*x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError